Problem # 313

Determine all real numbers x for which $x^n + \frac{1}{x^n}$ is an integer for all positive integers n.

Solution:

Answer:

$$x = \frac{m \pm \sqrt{m^2 - 4}}{2}$$
, where m is an integer and $|m| \ge 2$.

Proof. It is easily seen that x = 1, x = -1 works for all n. If $x + \frac{1}{x}$ is an integer, then

$$x^{2} + \frac{1}{x^{2}} = \left(x + \frac{1}{x}\right)\left(x + \frac{1}{x}\right) - 2 \quad \text{is an integer.}$$

$$x^{3} + \frac{1}{x^{3}} = \left(x + \frac{1}{x}\right)\left(x^{2} + \frac{1}{x^{2}}\right) - \left(x + \frac{1}{x}\right) \quad \text{is an integer.}$$

By induction if $x^k + \frac{1}{x^k}$ is an integer for $k \leq n$, then

$$x^{n+1} + \frac{1}{x^{n+1}} = \left(x + \frac{1}{x}\right)\left(x^n + \frac{1}{x^n}\right) - \left(x^{n-1} + \frac{1}{x^{n-1}}\right)$$

is an integer. Thus we must have $x + \frac{1}{x} = m$ where m is an integer. Then,

$$x^2 - mx + 1 = 0$$

$$x = \frac{m \pm \sqrt{m^2 - 4}}{2} \tag{1}$$

with
$$|m| \geq 2$$
.

Source: Suggested by Dr. T. Smotzer.